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1. Introduction

In this paper, the longitudinal free vibrations of a fixed-free bar are studied. It

is assumed that the bar initially consists of two phases, one of which was obtained

from the other by a martensitic phase transformation.' It is also assumed that both

phases of the bar have elastic constitutive behavior. For a bar that consists entirely

of one phase that behaves elastically, it is well known that during the free vibrations

of the bar the displacement and stress at each point of the bar oscillate as time

progresses [4]. If there is damping present, these oscillations will decay and go to

zero as time goes to infinity, otherwise their amplitudes will remain constant in time.

Considering this, for a bar that initially consists of two different phases that both

behave elastically, one might expect that the displacement and stress at each point

of the bar will also have oscillatory-type behavior during the free vibrations of the

bar. If this is the case, the driving traction at the interface separating the two phases

will oscillate. As a result of this, if the nominal phase boundary velocity is related

to the driving traction through a kinetic relation that does not have an interval of the

driving traction corresponding to a zero nominal phase boundary velocity, the nominal

phase boundary velocity will also oscillate. Since energy is dissipated when the phase

boundary moves and passes over particles of material of one phase converting them

into particles of material of the other phase, one might conclude that the oscillatory-

type response of the two-phase bar during the free vibrations of the bar should decay

as time increases. It is this damping behavior of the two-phase bar that will be the

main subject of this chapter. The solutions of the boundary value problem will be

determined by a numerical method, and the damping of the two-phase bar will be J

Maruasitic ph= rasformatio at diffmoales; solidslid ph amiodnati which, among other things.A EI
have conitiuos dispiaeienM with poil disomtinuous suana a da phaM boay. ram type of ......
mifomnadonsm ar alsocbcud by de pod• phe havinga shape deoaddomn ela•ive %do • Mh••e-d
prem phae, which coeupath to an unsuse undeformud wigraion of ,a product phase. See (5] vad(•-i /.E" 2 o.)
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studied as the material coefficients are varied. The values of the material coefficients

that result in the maximum damping will also be investigated.

2. The Kinematics

A one-dimensional finite bar that initially consists of two phases is considered. It

is assumed that the process under consideration occurs in a time interval r = [to, t1j.

Additionally, for the problem that is considered, a continuum model that was

developed in [6] (see also [7]) is used.

Consider a stationary reference configuration R for the bar. Let z denote a point

in R and let L be the length of the bar with respect to this reference configuration.

Considering this, R can be expressed as R = {x/ zE [0, L]}. Let O(z, t) be the

suitably smooth and invertible mapping which maps R into the deformed configuration

of the bar at each t E r, with j(z, t) = z + t(z, t) V (z, t) E R x r. The quantity

fi(x, t) represents the displacement of a particle of material at y = j(z, t) from the

point x E R at time t E r. In the following, the two phases of the bar will be

referred to as phase 1 and phase 2. Let x = s(t) be the reference position of the

phase boundary separating phase 1 from phase 2 at time t E r. It is assumed that

particles of material with reference points in R- = xz/z E (0, s(t)] } at time t E r

are in phase 1, and it is assumed that particles of material with reference points

in R+ = {x/z E [-(t),L]} at time t E are in phase 2. It is assumed that R-

coincides with an unstressed undeformed configuration of phase 1. We next assume

that there exists a shape deformation of phase 2 with respect to R+ that corresponds

to an unstressed undeformed configuration of that phase. Let Rt" be the reference

configuration coinciding with this shape deformation for all t E r. Let z, denote a

point in R+, and let ij(T,t) be the suitably smooth and invertible mapping which

maps R+ into R+ at each t E r, with z 1 = T(z, t) V z E R+ at each t E r. For the
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following problem, it is assumed that •i is given by

i,(X,t) = X + Yo(z - s(t)). (2.1)

The displacement gradient (transformation strain) corresponding to this choice of il

is -Yo, the Jacobian is i = 1 + -Yo, and R, = {fx 1/ E [• 1(s(t),t), 1 (L,t)]} =

{f,/ x, E [.(t),L(t)J]}, where L1(t) = ii(L,t) = L + - 0(L - s(t)). It is also

assumed that 'y0 > -1 so that reflections are excluded from (2.1). Additionally, the

inverse 1 of the i given by (2.1) is

1
i(z 1 , t) = -- (zr + 7Y0s(t)), (2.2)

1 + -Y0

V z, E R+ at each t E r. The mapping which maps R+ into the deformed

configuration of phase 2 at each t E r is represented by j 1(z 1,t), with &t(zI,t) -

X, + fii(zXt) V z, E R+ at each t E r.

3. The Continuum Model

In the continuum model that is used here, the constitutive equations for each

phase are defined with respect to different reference configurations. More specifically,

the constitutive equations for phase I are defined with respect to R-, and the

constitutive equations for phase 2 are defined with respect to Rt. Additionally, the

field equations for phase 1 are expressed with respect to R-, and the field equations

for phase 2 are expressed with respect to R+ (see [6], [7]). The main advantage

of using this continuum model for the problem under consideration is that the field

equations are in forms that permit direct linearization. This is the case since the

displacements for each phase are measured from a reference configuration coinciding

with an unstressed undeformed configuration of that phase, and consequently, for
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the appropriate boundary and initial conditions, the displacement gradients can be

considered infinitesimal.

4. The Field Equations and Jump Conditions

It is assumed that the process under consideration is a purely mechanical process

with no body forces present. The general field equations and jump conditions using

the type of continuum model described in the previous section and for a purely

mechanical process were derived and discussed in (6], [7].

The field equations for the problem under consideration consist of the balance

of linear momentum for phase I and the balance of linear momentum for phase 2.

These equations are

8a
= pa, (4.1)

Vx E R- at each t E r,and

oate =, - plal (4.2)

V zx E R+ at each t E r, respectively, where p(z) is the density of the mateaial per

unit volume of R, pi(z 1,t) = p(F)/J is the density of phase 2 per unit volume

of R+, o(z,t) is the nominal stress with respect to R- for phase 1, o'1(z1,t)

is the nominal stress with respect to R+, for phase 2, a(z,t) = i2 .(zt), and

As mentioned previously, the displacements at a phase boundary separating two

phases involved in a martensitic phase transformation are continuous, while the strains

may be discontinuous. Considering this, we require that P be continuous and the first

2 It is alao aamdh btha the unMw eaad undefonmod comfigmd of each phase cmoi ds 0 a Itisai
minimum of the el c U ctnzaI for that phase.
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and second derivatives of ý be piecewise continuous on R x r, with discontinuities

occuring only at x = s(t). The continuity of displacement condition in its most

direct form is

Yl (8(t),i0 = Y-CS),t) (4.3)

For the i given by (2.1), (4.3) reduces to

fi+(S(t), t) =-- fi-(S(t), t). (4.4)

Considering the continuity requirements on j and anticipating the form of the

constitutive equations for the type of material under consideration, we require that

the stress be piecewise continuous, with discontinuities occuring only at x = S(t).

The jump condition at x = s(t) representing the balance of linear momentum is

o + - - + p(6+ - r) =, (4.5)

where i(t) - d--) Differentiating (4.3) with respect to time yields
dt

('y+-t~+'t-r) + t- V o (4.6)(Ot0 + "/+70Y + -t|+ - -Y-)i + 0 -v-i , 46

at x = 3(t), where '- and -t i s. Using (4.6) in (4.5), we can obtain an

alternate form for the linear momentum jump condition:

a+ - orp - (YO + _Y+_Yo + _Y+ _ _Y-)(i) 2. (4.7)

The remaining equation at the phase boundary is a kinetic relation relating i and

the driving traction f (see [1]). This kinetic relation is a constitutive equation and

will discussed in the next section. For the problem under consideration the driving

traction is given by

ff= WI+ -W- - I(W I o-)(" + 3"|+3'0 + -t•+ - -f-).- (4.8)
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We also have the boundary conditions at z = 0 and x, = LI(t) (or z x L). For

the fixed boundary condition at x = 0, we have

u(Ot) =0, (4.9)

Vt E r. At the zx = LI(t) boundary, there is nothing applied to zfr boundary; i.e. it

is a free boundary. Therefore, the traction at this boundary is necessarily zero. Thus,

the boundary cordition at zi = LI(t) is

al(LI(t),t) = 0, (4.10)

VtE r.

5. The Constitutive Equations

It is assumed that both phase 1 and phase 2 are homogeneous elastic (or

hyperelastic) phases. In particular, for phase 1 we assume that there exists an elastic

potential

W = W(•), (5.1)

such that

0 1-- W (5.2)

and for phase 2 we assume that there exists an elastic potential

W,= W,(-y1), (5.3)

such that

awl (5.4)
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If we solve for u, = fii(z 1,t) in the dynamic boundary value problem, the

acceleration term a, in Equation (4.2) will contain several inertial-type terms that

are solely a result of i being a function of time. This was discussed for the

general three-dimensional problem in [6], [7]. As was further discussed there, but

again for the general three-dimensional problem, these inertial-type terms can be

avoided by instead solving for uI = fi (z, t) in the boundary value problem, where

fA(z,t) = -- (i 1(x,t),t) and fsi(z 1,t) = u,(!(x! 1t),t). This will be done in the

boundary value problem that is considered here.

Iris assumed that phase I is unstressed at7 = 0 and phase 2 is unstressed at71 -

0. We next assume that the initial conditions are such that 171 << 1 V z E [0, s(t))

and I-y'iI << 1 Vz E (s(t),LI, at each t E r, where here and in the following,
.•___ .• 80i B .I • Frteeasmto

7,= -a =1 2a -8* . For the a' given by (2.2), 7y= 1 NL Fo these a•ssu dos,

W for phase 1 can be written as

W = W- + !E? + 0(7'), (55)
82W

where W" = W(0) and E = "'-TI,=0, and W, for phase 2 can be written as

W, = wTV + !E,7, + 0(7d), (5.6)

where W," = W1 (0) and El = k=o. From (5.2) and (5.5), the first-order

approximation of a for phase 1 is

Et = E!---, (5.7)

and from (5.4) and (5.6) the firt-order approximation of a' for phase 2 is

al = - E (5.8)1 +7- Ox



We note that the constitutive quantities for phase 1 given by (5.1), (5.2), (5.), and

(5.7) are defined with respect to R-, and the constitutive quantities for phase 2 given

by (5.3), (5.4), (5.6), and (5.8) are defined with respect to R+, even though (5.6) and

(5.8) are in terms of the independent variable x E R+.

We next assume that WO = J W1. This assumption might be most appropriate

if phase I and phase 2 represent two different variants of the same martensite. We

note, however, that if this were the case we need not assume that 2, = t, since

in a real three-dimensional material the moduli in a given direction of two variants

of martensite separated by a phase boundary are not, in general, the same, and this

can be incorporated into a one-dimensional model by assuming that E1 1 E. For

these assumptions and using (5.5)-(5.8), the first-order approximation of the driving

traction given by (4.8) is

'fE I 2 1I0YO")+ \a/ 7, (5.9)

We next postulate a kinetic (constitutive) relation

i = ,,(f), (5.10)

such that

0(f)f Ž0, (5.11)

for all f [1]. The requirement given by (5.11) is imposed so that energy is dissipated

(or preserved if the equality sign holds) during a phase transformation, instead of

being created. We further assume that for the problem under consideration, the first-

order form of lb(f) is
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where the constant v depends on the material and is such that v > 0 so that (5.11)

is satisfied.

6. The Boundary Value Problem

Substituting (5.7) into (4.1) and expressing the acceleration in that equation in

terms of ti, we obtain the following for the balance of linear momentum for phase 1:

Ef-•j= p•-f, (6.1)

V x E (0,a(t)) at each t e r. Substituting (5.8) and p, = p/g = p/(l + -o) into

(4.2), and calculating a, in that equation using O1t(• 1(z,t),t) = il(z,t) + fi1(z,t),

we obtain the following for the balance of linear momentum for phase 2:

(1 + yo) 0X2 = (- -to-ý2 + &2/, (6.2)

Vz E (s(t),L) at each t E r.

For the linearized problem, the continuity of displacement condition is still given

by (4.4), since there is nothing to linearize in that equation. We next consider the

linearized form of the linear momentum jump condition given by (4.7). Became a is

related to - and -yi through the kinetic relation given by (5.12), i2 is second-order in

-7 and 7-; i.e j2 goes to zero at the same rate as 7 2 , 72, and ,y, go to zero. However,

the second-order terms in i2 also contain the constants E2 /u, E4/1v, and EEl/v.
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Considering the fact that the magnitudes of E and El are very large, if the magnitude

of v is not also large, y and "y1 might have to be unrealistically small in order for the

terms in i2 to have magnitudes that are negligible in comparison to the magnitudes

of the first-order terms. In the following, it will be assumed that the values of

the material coefficients are such that the magnitudes of the second-order terms in

Equation (4.7) are negligible in comparison to the magnitudes of the first-order terms

in that equation for realistic values of the infinitesimal strains.3 The restrictions that

this assumption puts on the relative values of v and the other material coefficients can

best be observed when the linear momentum jump condition and the kinetic relation

are in nondimensional form, which will t .: done in the next section. The true first-

order approximation of the linear momentum jump condition given by (4.7) is

E1 +-II E 1a =0, (6.3)1 +"70" 1 • (MMA), 9T) (.(nt)

V t E r, which is equivalent to the continuity of tractions across the interface. Using

(6.3) in (5.12), the first-order approximation of the kinetic relation for the problem

under consideration can be written as

v[LOE J (6.4)

vt E r.

For the linearized problem, the fixed boundary condition is still given by (4.9), and

using (5.8) in (4.10), the first-order approximation of the free boundary condition is

af--I(L = 0, (6.)(7Z I(L,,t)

Vt E r.
3 We noe that the values of ihe suain at the interfac as &me pwpeas an poponial the initia cod
tha atm ive.
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7. The Nondimensional Form of the Boundary Value Problem

For the problem under consideration, we define the following nondimensional

variables:

X- t = Wt L

( _ L, f/w) ,(, I ( L,(7.1)
L ( L

* __- _ -___

(1 + YO)E' 'oVP'

where w = /E/1(5L2). Using these nondimensional variables, the nondimensional

form of the balance of linear momentum for phase 1 is

02-- - , (7.2)

w E (0,S(D) a•,eachE f. where 1 = [i0,i] -[wto,wt], and the nondimensional

form of the balance of linear momentum for phase 2 is

2- + '-f t - (73)

The nondimensional form of the continuity of displacement condition is

ii(!(ý',t = iiI(i (ý',, (7.4)

V t E f', and the nondimensional form of the first-order form of the balance of linear

momentum jump condition given by (6.3) is

4 In the folMowing. i will denote the nondimensina] independent variable defined by (7.1)I, and not the invete
funcuon of the function it which maps R÷ into RW at each t e r.
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V t E f. Additionally, the nondimensional form of the kinetic relation given by

(6.4) is

di = -i ).i' (7.6)

Vi E f. In the previous section, the issue concerning when it is appropriate to neglect

the second-order terms in the linear momentum jump condition was discussed. The

nondimensional form of the lowest-order term that was neglected in that equation

is ,O,(-;)2. From this, (7.6), and the definitions of the nondimensional parameters,

we can observe what relative values of the material coefficients are appropriate for

the assumption that the magnitude of -yo(0)2 is negligible in comparison to the

magnitudes of the terms in (75), for realistic values of the initial conditions.

The nondimensional form of the fixed boundary condition is

ii(o') = 0, (7.7)

V t E f, and the nondimensional form of the free boundary condition is

8xi =0, (7.8)

Vi E ft.
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We must also specify initial conditions for the two-phase bar. In particular, for

phase I we specify
A i, 40) h= i

(7.9)

for 0< : < J(t), and for phase 2 we specify

ii,(,i0) hffi (),

(7.10)

for j(t) < i < 1. We also must specify an initial position for the phase boundary.

In particular, we specify

i(10) = o0. (7.11)

The initial boundary value problem that will be considered consists of the field

equations (7.2) and (7.3), the continuity of displacement condition (7.4), the linear

momentum jump condition given by (7.5), the kinetic relation given by (7.6), the fixed

boundary condition (7.7), the free boundary condition (7.8), and the initial conditions

given by (7.9)-(7.11).

8. The Numerical Method of Solution

We can observe that the differential equations involving time derivatives in the

boundary value problem presented in Section 7 consist of a wave equation given by
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(7.2), a forced wave equation given by (7.3), and an ordinary differential equation

given by (7.6). The boundary conditions for Equations (7.2) and (7.3), given by (7.7)

and (7.8), are both with respect to fixed boundaries.' However, the jump conditions

given by (7.4) and (7.5), which are also types of boundary conditions, are with respect

to a moving boundary (i.e. the interface). We also note that because j() is one of the

unknown dependent variables in the problem and the jump conditions are evaluated

at i = i(tý), the boundary value problem is inherently nonlinear with respect to 1().

Dynamic boundary value problems involving moving interfaces within finite

bodies have been studied before (see 3]). Some of the more well known of these

problems are the class of problems considered to be Stephan problems. These types of

problems involve melting solids, with a moving interface (or boundary) separating the

solid from the liquid. The unknowns in these types of problems are the temperature

distributions of both the liquid and solid phases, and the position of the interface

separating these two phases. The governing equations for these Stephan problems

consist of heat equations for both phases and an equation governing the motion of

the interface. There are a variety of numerical methods that have been used to study

these Stephan problems (see [3] for an overview and discussion of these methods).

Among these numerical methods are several types of finite difference methods.

For the problem that is considered here, the type of numerical method that will be

used is a finite difference method. This type of numerical method has been chosen,

as apposed to, e.g., a finite element method, because it is probably the most straight

forward to apply to the type of boundary value problem that is being considered. The

particular finite difference method used here, however, does differ somewhat from

the finite difference methods that have been used for the Stephan problems that are

5 Now that if we wer solving for iti instead of ii in the boundary value problem, the free boundary conditim

would be with respea to a moving boundary.
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discussed in [3]. Most of these differences reflect the fact that the field equations in

the Stephan problems are of parabolic-type with monotonically decaying solutions,

and the field equations in the problem considered here are of hyperbolic-type with

decaying oscillatory solutions.

In the following, let T[a, b] = {m E Z/a < m < b, a E Z, b E Z}, where Z

denotes the set of all integers. For the finite difference method that is used here,

the bar will be divided into n intervals, each of length h = 1/n. The points

x = ih, i E .[0, n], will be referred to as the nodes of the bar. In the finite difference

method, the displacements at these nodes will be determined (i.e approximated). The

time increment is denoted by T, and for convenience we assume in the following

that to = 0. Considering this, i = jT, j E 1[0,/1], where il and 11 are chosen

such that I1T = il. We let s(j) represent i(jT), and k(j) denote the node such

that Is(j) - k(j)hl < h/2, at time i = jT. Additionally, we let p(j)h represent the

distance from the node k(j) - 1 to s(j), at time i = jT. Considering this, we can

write s(j) as s(j) = [k(j) - 1 + p(j)]h, at each j E I[O,l1]. Let u(i,j) represent

fi(ih, jT), 0 < ih < s(j) at each j E 1[0,11], and let u1(i,j) represent fii(ih, jT),

s(j) :_ ih < 1 at each j E 1[0, 11). Additionally, let q(j) denote the displacement at

the interface at time t = jT; i.e. let q(j) represent fi(i(jT),jT) = fit(j(jT),jT).

We also let t(j) represent the nondimensional kinetic relation given by (7.6) at time

f= jT.

At each time increment, the numerical routine begins by calculating s(j + 1).

We are given s(0) as an initial condition. At j = 0, we use an Euler's method to

approximate Equation (7.6) and obtain s(1). In particular, we use

p(M) = p(0) + Tt(o) (8.1)
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to obtain p(1). Since k(O) is given when s(0) is given, we can then obtain s(1). For

this case where j = 0, we can use the initial conditions given by (7.9), and (7.10), to

obtain the derivative term in ,(0). The specific form of these initial conditions will

be discussed at a later point in this section. Also, we note that Euler's method has

an O(T) numerical error. At j = 1, we use an Adams-Bashforth two-step method,

which has an O(T 2 ) error (see [2]), to approximate Equation (7.6) and obtain s(2).

The resulting equation for p(2) is

p(2) = p(l) + T{3H(1) - 4'(0)}, (8.2)

which can then be used to obtain s(2). Also, to obtain the derivative term in op(1) we

can use the initial conditions given by (7.9) and (7.10). For j E .7[2, 11 - 1], we use

an Adams-Bashforth three step method, which has an O(T 3) error, to approximate

Equation (7.6) and obtain s(j + 1). In particular, we use

p(j + 1) = p(j) + 1-{ 234,(j) - 16t(j - 1) + 5,t(j - 2)} (8.3)

to obtain p(j + 1) for j E 27[2,/1- 1]. p(j + 1) is then used to obtain s(j + 1).

The specific form of the finite difference approximation in 4)(j), j E r[2,11], will be

discussed at a later point in this section. Also, because of the definition of k(j + 1),

after each p(j + 1) is calculated, it must be checked to determine whether it is such

that 0.5 • p(j + 1) _< 1.5. If p(j + 1) is calculated to be such that p(j + 1) < 0.5,

k(j + 1) must be set to k(j + 1) = k(j) - 1 and p(j + 1) must be updated to

p(j + 1) --, p(j + 1) + 1. If p(j + 1) is calculated to be such that p(j + 1) > 1.5,

k(j + 1) must be set to k(j + 1) = k(j) + 1 and p(j + 1) must be updated to

p(j +1) --, p(j +1)- 1.

At each time step, once p(j + 1), k(j + 1), and s(j + 1) are determined, and

p(j + 1) is updated if necessary, the displacements at the nodes are determined.
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For each j E 1[1,11 - 11, the displacements u(i,j + 1), i E I(1, k(j + 1) - 11,

and ut(i,j + 1), i E Z[k(j + 1) + 1,n - 1], are determined from centered-type

difference equations. It will also be assumed in the following that Is(j + 1) - s(j)l <

h/4, V j E 1[O, I1]. This is done so that u(i,j- 1), u(i,j), and u(i,j + 1)

in the difference equations representing Equation (7.2) all correspond to phase 1,

and u1(i,j - 1), ul(i,j), and ul(i,j + 1) in the difference equations representing

Equation (7.3) all correspond to phase 2.6

To obtain the initial displacements at the nodes, we use the initial conditions

given by (7.9), and (7. 10)1. We assume that these initial displacements are continuous

V i E (0, 1), satisfy the boundary conditions given by (7.7) and (7.8), are such that

the linear momentum jump condition given by (7.5) is satisfied, and have a first mode

type mode shape. In particular, we assume that

) oi, (8.4)

for 0 < i < .S(O), and

h - . {(C - 1) 2 - (_ (0) - 1)2} +e oi(O), (8.5)
2Et(J(0) - 1)

for 4(0) < " < 1. The values of the displacements at the next time increment

can be approximated by the Taylor series expansion in time of the displacements.

In particular, using the initial conditions given by (7.9) and (7.10), the first-order

approximation of i and ii1 at i = T are

ii, T) = h(l) + )T, (8.6)

Now " din s coi A tomi wih th anmption thai the manides of the =ns in a in ft Unm zmwom
jump conditin awe -,gjigible in comparion to the magniuades of the firmonlrtan sm in that jimp conditi.
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for 0 _< i _< j(O), and

,i,(, T) = h,(1) + i.())T, (8.7)

for J(0) <: < 1, respectively. It is assumed that the initial velocity distribution

results in a continuous displacement at the phase boundary at time t = T, results

in the boundary conditions given by (7.7) and (7.8) being satisfied at time i = T,

results in the linear momentum jump condition given by (7.5) being approximately

satisfied at time i = T, and has a first-mode type velocity profile. Such an initial

velocity distribution is given by

§(i) = vo0, (8.8)

for 0 < _< 5(0), and

Vo( = -1T 1 - 1)2 - (g(T) - 1)2) + vog(T), (8.9)

2E(i(T) - 1)

for 5(0) _< i < 1. This initial velocity distribution was used in (8.6) and (8.7), which

were then used to obtain the displacements at the nodes at T.=

For j E 1(1, 11 - 11, u(0,j + 1) is obtained from the following equation which

represents the fixed boundary condition given by (7.7):

u(0,j + 1)= 0. (8.10)

V jE X[1,11- 1]. We can obtain u(i,j + 1), for i E 2[1,k(j + 1)- 2] at each

j E T[1, l1 - 1], from a finite difference approximation of Equation (7.2) which uses

centered difference equations for equally spaced nodes to approximate each term in

SWe nmo that i(T) is not a givena commant in t problem ad thw efw cannot be eand if an analytical sobrA on
was to be obtained. In ,is cu, we could mae i(0) Inst•d of i(T) in (8.9) a an apprmximatio For te
numerical method, however, weca me =(T).
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that equation. In the following, centered difference equations for equally spaced

nodes will be referred to as standard centered difference equations. The resulting

difference equation that is used to obtain u(i,j + 1) is

u(i,j + 1) = 2u(i,j)-u(ij - 1)+a{u(i + 1,j) - 2u(i,j) + u(i - 1,j)}, (8.11)

for i E 1[1, k(j + 1) - 2] at eachj E Z1[1, 11 - 1], where a = (T/h)2. The difference

equation given by (8.11) is commonly used for the wave equation [2]. It is also

well known that a numerical routine using this difference equation is numerically

stable if and only if a < 1, and that the numerical error increases as a decreases

from 1 [2]. We can obtain u1(i,j + 1), for i E T[k(j + 1) + 2,n - 1] at each

j E 2.1,11 - 11, from a finite difference approximation of Equation (7.3) which uses

standard centered difference equations to approximate each term in that equation. The

resulting difference equation that is used to obtain uI(ij + 1) is

ut(i,j + 1) = 2u,(i,j) - ut(i,j - 1) + ta{ut(i + 1,j) - 2u,(i,j) + ul(i - 1,j)}

+ 70f{s(j + 1) - 2s(j) + s(j- 1)},
(8.12)

for i E c[k(j + 1) + 2, n - 1] at each j E 1[1, 11 - 1]. For j E .1[1,11 - 1], we can

obtain u(nj + 1) from an O(h2) difference equation representing the free boundary

condition given by Equation (7.8). This difference equation is

u 1(n,j + 1) = {4u,(n- 1,j + 1) - u1 (n - 2,j + 1)}, (8.13)

for each j E -T[1, l1- 1].

For the displacements u(k(j + 1) - 1,j + 1) and/or u1(k(j + 1) + 1,j + 1),

finite difference methods using q(j) will be used. For the derivation of the difference

equations for these displacements, we first note that the distance separating 9(j)
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from its nearest nodes is not equal to h. Because of this, difference equations for
unequally spaced nodes must be used to represent "These difference

equations will be derived from the second-degree Lagrange interpolating polynomials

for ii and/or fii near the interface. For a function g(&), its second-degree Lagrange

polynomial, denoted by P(z), is given by

(= - Xi)(X - T2 ) + (X- Xo)(X - X2) , ,
P(x) = (x x)(Xo - X2)g~x°) + - xo)(xO - X2) (8.14)

(z - Xo)(x- ,) - ) ,

+(X - XO)(X2 - XI1)

where XO, Xi, X2, g(&o), g(x1), and g(--2) are given (see (2]). The first derivative

of P(X) ;-Z g(X) is

dP(x) x - x, + X - X2 X - Xo + X - Z2

dx (zO - Xl)(XO - X2) (aX - XO)(XI' - X)2(,) (8.15)
+ X- Xo + X-- X1 (-2)

and the second derivative is

d 2P(x) 2 2

da'2  (Xo - Xl)(Xo - X2)g()+ (XI - Xo)(a' 2)g(a') (8.16)
2

+ (Z2 - O')(X2 - XI)

If we choose x = xO, x I, or X2 in Equations (8.15) and (8.16), the errors in these

equations are approximately O(d 2), where d is the maximum distance between any

of these three points.! Also, we note that when z 0 , x', and X2 are equally spaced,

(8.16) reduces to a standard centered difference equation of the form that was used

in (8.11) and (8.12).

" See [2) for a mom detailed discusion of the error dhat is involved in the Lagrange interpolating polynomial
and it derivatives. Als, difference equations of this type are ueed in some finite difference methods for Stephan
problems (see [31).
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Case 1: Consider the case where 0.5 < p(j + 1) ! 1.5, before being updated (Figure

la). For this case, k(j + 1) = k(j), and for the calculation of u(k(j + 1) - 1,j + 1),

a difference equation of the form (8.16) will be used to approximate - at t - jT

in Equation (7.2). Using this difference equation and a standard centered difference

equation for the second time derivative term in Equation (7.2), we obtain

u(k(j + 1) - 1,j + 1) = 2u(k(j + 1) - 1,j)- u(k(j + 1) - 1,j - 1)

+ 2a u(k(j) - 2j) u(k(j) - 1,j) + q(j)

+() (*) [1 + pW) jT

Similarly, for the calculation of u1(k(j + 1) + 1,j + 1), a difference equation of the

form (8.16) will be used to approximate at i = jT in Equation (7.3). Using this

difference equation and standard centered difference equations for the second time

derivative terms in Equation (7.3), we obtain

ui(k(j + 1) + 1,j + 1) = 2u,(k(j + 1) + 1,j) - ul(k(j + 1) + 1,j - 1)

q(j) ui(k(j) + 1,j) +u(k(j) + 2,}j)
+- 2E{[2 - p(j)][37-p(j)] - 2 - p(j) 3 - p(j)

+ -t{os( + 1)- 2s(j) + s(j - 1)}.

We note that when p(j) = 1, Equations (8.17) and (8.18) reduce to Equations (8.11)

and (8.12), respectively.

Case IH: Consider the case where p(j + 1) < 0.5, before being updated (Figure

lb). For this case, k(j + 1) = k(j) - 1 and p(j + 1) --* p(j + 1) + 1. Additionally,

in this case, we can use the difference equation given by (8.11) for the calculation

of u(k(j + 1) - 1,j + 1). However, for the calculation ofu1 (k(j + 1) + 1,j + 1), a
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difference equation of the form (8.16) will be used to approximate Z-; and standard

centered difference equations will be used to approximate the two time derivative

terms in Equation (7.3). The resulting difference equation is

ui(k(j + 1) + 1,j + 1) = 2u,(k(j + 1) + 1,j) - u(k(j + 1) + 1,j - 1)

+ q(j) ul(k(j),j) + uI(k(j) + 1,j) (8.19)
p(j)][2 - p(j)] 1 - p(j) 2 - p(j) (

+,of{s(j + 1) - 2s(j) + s(j - 1)).

Case III: The last case that can occur is p(j + 1) > 1.5, before being updated

(Figure Ic). In this case. k(j + 1) = k(j) + 1 and p(j + 1) -- p(j + 1) - 1. In this

case, for the calculation of u(k(j + 1) - 1,j + 1), a difference equation of the form

(8.16) will be used to approximate 9 and a standard centered difference equation

will be used to approximate the second time derivative term in Equation (7.2). The

resulting difference equation is

u(k(j + 1) - 1,j + 1) = 2u(k(j + 1) - 1,j)- u(k(j + 1)- 1,j - 1)

+ 2a u(k(j) - 1,j) u(k(j),j) + q(j)
pMi p(j) - 1 p(j)[p(j)- 1

(8.20)

For this case, we can use the difference equation given by (8.12) for the calculation

of u,(k(j + 1) + 1,j + 1).

Once s(j + 1) and the displacements at the nodes i E 2[0, k(j + 1) - 1] and i E

I"[k(j + 1) + 1, n] have been determined, we determine the displacement q(j + 1) at

the interface from the difference equation representing the linear momentum jump
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condition. Using difference equations of the form (8.15) to approximate the spatial

derivatives in Equation (7.5), we obtain

E +) [2p - 5] 2p + 1 }-u{l p _2,j+1)
q~ )I[2 - p][3 - p] (I + pip I+

+ P-(k - 1,j + 1) - 3 Pu,(k + 1,j + 1) (8.21)

p 2- p

_-. _2pu (k+ 2,j+1)

where k = k(j + 1) and p = p(j + 1).

The last displacement that must be calculated at each time increment is the

displacement at the node k(j + 1). This displacement will be calculated using

a second-degree Lagrange interpolating polynomial. In particular, if k(j + 1)h <

s(j + 1), we calculate u(k(j + 1),j + 1) from

u(k,j +1) = - Pu(k - 2,j +1) + u(k - 1,j +1) + 2q(j+)(8.22)
1 + p p [1 +pIp '

where k = k(j + 1) and p = p(j + 1), and if k(j + 1)h > s(j + 1), we calculate

ul(k(j + 1),j + 1) from

2q(j + 1) 2[1-pJp•(1ukj ) -[2 - p][3 - p]+2 - p3-

(8.23)

where k = k(j + 1) and p =p(j + 1).

The last quantity that is calculated at each time step is §(j + 1). Recall that

this quantity is used in the calculation of p(j + 1) at the next time step. For the
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calculation of b(j + 1), j E [I[, l1 - 1], a finite difference equation of the form

(8.15) is used for the approximation of 394 ) The resulting finite difference

equation for t(j + 1) is

4U(j + 1) = - - 2J + 1) - -U(k - 1,j + 1)
vFh 1 +pp

(8.24)

2p+1 + 1Il1 + pip

for j E [1I,11- 1], where k = k(j + 1) and p = p(j + 1).

The numerical routine that was discussed above allows for the phase boundary to

pass over nodes other than the node k(j). However, for a problem that uses a kinetic

relation of the form given by (7.6), most values of the material coefficients that are

consistent with the assumption that the second-order terms in the linear momentum

jump condition are negligible in comparison to the first-order terms in that equation

and most initial conditions that produce infinitesimal initial stains will result in the

phase boundary staying within the interval between the nodes k(j) - 1 and k(j) + 1

for all i E f. In this case, a simplified numerical routine can be used where k(j) has

the same value at each time increment, p(j + 1) never needs to be updated (in the

sense that it was updated in Cases II and 111), and only Case I for the calculation of

the displacements near the interface needs to be considered.

9. The Free Vibrations and Damping Properties

In this section, the free vibrations of the two-phase bar that were determined

from the finite difference method that was discussed in the previous section are

discussed. As expected, the response of the two-phase bar to the initial conditions

given by (8.4), (8.5), (8.8), (8.9), and (7.11) has a decaying oscillatory form. In
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particular, the position of the phase boundary oscillates as time progresses and decays

to a new position that has a distance and direction from its initial position that is

proportional to the magnitude and "direction" of its initial conditions (Figures 2-4).

The displacements also have a decaying oscillatory form, and they go to zero as time

goes to infinity (Figures 5-9). The mode shape of the bar during these free vibrations

has a first mode type form (Figure 10)9. This is most likely a result of the fact that

first mode type initial conditions were given.

9.1. The Damping Behavior

The damping of the bar was studied as F, t, and -to were varied. In Figure 11,

a plot of the settling time versus P is presented.1° Here, the settling time is defined as

the nondimensional time necessary for the amplitude of fii(L, t) to become less than

10-4. As the settling time decreases, it is said that the damping of the bar increases.

As expected, as fl decreases, the damping of the bar increases. This is primarily a

result of the fact that for a giver! amount of strain at the interface, the nominal phase

boundary velocity increases as P decreases. Consequently, as P decreases, there is

more motion of the phase boundary in a given interval of time, which results in

more energy being dissipated in that interval of time. This increase in damping as

P decreases is also displayed in Figures 2-7. From Figure 11, it appears that the

"frequency" of oscillation does not significantly depend on P. In particular, it can be

observed from this figure that as P is varied the settling time remains constant over

an interval of P, and when the settling time changes, it does so discontinuously. This

9 In Figure 10, i vs i is ploted for 0 !5 i < (t) and i, vs i is plotted fori (tý) <5 • < 1. The shape deformiaton
for phue 2 is not ploaed
1o In this figure. the seuling time versus i is not presented for 0 < i < 0.09 because the nutnerical routine is
unstable for these values of i, when t = 1.15, -m = 0.1, T = 0.01, and h = 0.02. This will be discussed
further in the next section. Also, in this figure and in Figures 12 and 13. the initial conditions that were used mae
Co -0.001, e= 0.001, and , = 0.5.
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is a reflection of the fact that as f, decreases the amplitude of oscillation decreases,

but the "frequency" of oscillation does not.

In Figure 12, the settling time versus t is presented. From this figure it can be

concluded that as E goes to zero, the damping goes to zero (i.e. the settling time goes

to infinity), and as t increases, the damping increases. Additionally, this increase

in damping levels off at a relatively high level of damping (i.e. at a relatively short

settling time) after E ; 0.15.

For the plots of the settling time versus the transformation strain -yo, we do

not vary "yo and keep E and P constant. This is because k and P can remain

constant as -yo is varied only if EI/E and v/lVlE also change values. We instead let

= EI/E and V,' = v/v/'r and substitute E =EA'/(1 + -70) and P = i//'yo into the

difference equations of the finite difference program. We then plot the settling time

versus -yo while keeping E' and V' constant. An example of such a plot is shown in

Figure 13. From this figure we can conclude that as '7o goes to zero the damping goes

to zero, and as the magnitude of -7o increases the damping increases. We can also

observe from this figure that as the magnitude of '7o becomes greater than I'7[o ; 0.06

the damping becomes appreciable, and for 1[0I less than this value the damping is

relatively small. It is interesting to note that if one were to define an infinitesimal

transformation strain as one that produces a vibration response that is qualitatively like

that produced as '7o -- 0, and if one were to define a finite transformation strain as one

that produces a vibration response that is qualitatively like that produce by a -yo that is

close to or less than -0.5 or is close to or greater than 1, for the values of E' and V?

considered, a transformation strain with a magnitude that is less than 1-70o • 0.06

would be considered infinitesimal, and a transformation strain with a magnitude that

is greater than 10ol ;; 0.06 would be considered finite. These "transition" values
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"-0 ;, -0.06 and -Yo z 0.06 separating the infinitesimal transformation strains from

the finite transformation strains are probably much smaller than most might have

guessed beforehand. This also underlines the importance of treating a transformation

strain that is not truly infinitesimal as a finite strain, for at least vibration problems.

9.2. Instabilities of the Numerical Routine

As mentioned previously, there are some instability problems with the numerical

routine for values of P, E, and -Yo outside of a certain region of the parameter space.

In some cases, these instabilities resemble those of highly damped systems, which

are sometimes referred to as stiff systems in the numerical methods literature [2].

In the remaining cases, the loss of stability of the numerical routine resembles that

of a standard centered difference numerical routine for a wave equation when the

coefficient multiplying the term representing the spatial derivative becomes greater

than one. In both cases, however, the values of i, E, and -yo where the numerical

routine loses stability depends on the values of T and h that are used. For example,

for h = 0.02, k = 1.15 and -to = 0.1, the numerical routine loses stability as P

is decreased at f, ; 0.22 when T = 0.018, and at P) • 0.09 when T = 0.01. The

loss of stability in both of these cases resembles that of stiff systems. In fact, for

the latter case, the displacements reach their settling time in almost one half of one

"cycle" of oscillation. One should note however that as P gets close to zero, the

assumption that v is such that the magnitude of i2 is negligible in comparison to

the magnitudes of the first-order terms in Equation (4.7) becomes less valid. For

h = 0.02, P = 0.5, and 'y0 = 0.1, the value of £ beyond which the numerical

routine is unstable is E ; 1.23 when T = 0.018, and E ;-v 4.01 when T = 0.01.

Both of these values of E correspond to t(T/h)2 ; 1 (recall tha this term appears

in the finite difference approximation of the forced wave equation for phase 2 given
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by (8.12)). For T = 0.018, h = 0.02, .' = 1.265, and V' = 0.05, the numerical

routing is stable for 0.021 < 'yo < 0.152. The loss of stability at -yo - 0.021

corresponds to E(T/h)2 ; 1, and the loss of stability at -yo •, 0.152 resembles that of

a stiff system. For T = 0.01, h = 0.02, E' = 1.265, and V' = 0.05, the numerical

routing is stable for -0.232 < -( < 0.256. For this case, the loss of stability at both

"70 : 0.256 and -r0 =, -0.232 resembles that of stiff systems.
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